Hans Walser, [20080110a]
MšbiusbŠnder
Anregung: E. A. F., B. und [Kroll 2007]
Das Mšbiusband wird so modifiziert, dass es (mit Selbstdurchdringung) in der Einheitskugel liegt.
WendelflŠche im Zylinder
Die WendelflŠche hat drei ãDoppeltwistsÒ.
Wir biegen den Zylinder zum Torus
Die ãverbogeneÒ WendelflŠche hat die Parameterdarstellung:
In
unserem Beispiel ist ; das ist der Radius des Kreises in der Torusseele. Weiter
ist
. Dies sehen wir daran, dass wir drei ãDoppeltwistsÒ haben.
Wir
variieren nun die Werte und
.
FŸr ergibt sich ein
halber Doppeltwist, also ein einfacher Twist. Das ist das so genannte Mšbius-Band.
Mšbiusband,
Das Mšbiusband ist nicht orientierbar, wie aus dem brutalen Farbwechsel links unten ersichtlich ist.
FŸr erhalten wir eine
orientierbare FlŠche.
Orientierbare
FlŠche,
FŸr ergibt sich
wiederum eine nicht orientierbare FlŠche, also ein verallgemeinertes
Mšbiusband.
Verallgemeinertes
Mšbiusband,
Wie ist
es bei ?
, es geht nicht auf
Nach zwei UmgŠngen geht es dann auf. Wir erhalten ein Super-Mšbiusband mit kreuzfšrmigem Querschnitt. Es ist nicht orientierbar.
, mit zwei UmgŠngen
FŸr braucht es drei
UmgŠnge; die FlŠche ist orientierbar. Der Querschnitt der Figur sieht aus wie
die drei Mittelpunktsdiagonalen eines regelmЧigen Sechseckes.
, mit drei UmgŠngen
Allgemein
gilt fŸr eine gekŸrzte rationale Zahl : nach einem Umgang haben wir vor Ort eine Verdrehung im
. Falls q ungerade
ist, schlie§t sich die FlŠche nach q
UmgŠngen und ist orientierbar. Falls q
gerade ist, schlie§t sich die Figur nach
UmgŠngen, ist
aber nicht orientierbar.
Wir
setzen in der Parameterdarstellung ; wir arbeiten also mit:
Dann liegt die FlŠche in der Einheitskugel.
FŸr ergibt sich:
Mšbiusband in der Kugel
Das ãBandÒ ist nicht orientierbar, wie der FŠrbung glauben dŸrfen, welche aus der Parametrisierung der FlŠche hervorgeht. Wenn wir allerdings das Zentrum entfernen, bleibt eine zusammenhŠngende orientierbare FlŠche Ÿbrig. Einen analogen Sachverhalt kennen wir vom gewšhnlichen Mšbiusband, wenn wir es lŠngs der Mittellinie entzweischneiden wollen.
Zentrum entfernt
FŸr mit zwei UmgŠngen
erhalten wir:
, zwei UmgŠnge
FŸr ergibt sich der
so genannte vivianische Kegel ([Kroll
2007], S. 16).
, vivianischer Kegel
Schlie§lich
noch fŸr und
in je zwei
Ansichten.
Literatur
[Kroll 2007] Kroll,
Wolfgang: RŠumliche Kurven und FlŠchen in phŠnomenologischer Behandlung. © 2007
by Wolfgang Kroll, Marburg. ISBN 978-3-00-021836-1
http://www.sciface.com/education/data/more/krollkuf/index.html