Hans Walser, [20230806]
Zahlenrundlauf
Spielerei im Kontext der trigonometrischen Umrechnungsformeln
Gib im Taschenrechner eine beliebige positive Zahl ein.
Drücke der Reihe nach folgende Tasten:
> arctan (das ist dasselbe wie inv tan oder tan–1)
> cos
> x2
> 1/x
> –1 =
> √ (Quadratwurzel)
Es spielt keine Rolle, ob man mit Rad oder Deg arbeitet. Radwechsel beim Durchqueren der Furt nicht ratsam.
1944 (eingegebene Zahl)
> 89.970526864990026
> 0.000514403224123
> 0.000000264610677
> 3779137
> 3779136
> 1944
π (eingegebene Zahl)
> 72.343212848587142
> 0.303314471053353
> 0.091999668350375
> 10.869604401089359
> 9.869604401089359
> 3.141592653589793
0 (eingegebene Zahl)
> 0
> 1
> 1
> 1
> 0
> 0
–4 (eingegebene Zahl, negativ)
> -75.963756532073521
> 0.242535625036333
> 0.058823529411765
> 17
> 16
> 4 (das Vorzeichen verschwindet)
2+3*I (eingegebene
Zahl, komplex, I2 = –1)
>
arctan(2+3*I)
>
1/2/(-1+3*I)^(1/2)
>
-1/40-3/40*I
>
-4+12*I
>
-5+12*I
> 2+3*I
2+3*I (eingegebene Zahl, komplex, I2 = –1, numerische Rechnung)
>
1.409921050+.2290726830*I
>
.1644033778-.2280975028*I
>
-.2500000015e-1-.7499999986e-1*I
>
-4.000000033+12.00000000*I
>
-5.000000033+12.00000000*I
> 1.999999997+3.000000004*I
7^(1/2) (eingegebene Zahl, √7)
>
1.209429203
>
.3535533905
>
.1249999999
>
8.000000006
>
7.000000006
> 2.645751312
Trigonometrische Umrechnungsformeln